Math, asked by medhashukla2006, 1 month ago

(tan theta)/(sec(theta) - 1) = (tan theta + sec(theta) + 1)/(tan theta + sec(theta) - 1) Please it's urgent​

Answers

Answered by chouhancharanpreet
0

Step-by-step explanation:

tanθ+secθ−1

=

cosθ

1+sinθ

Solution:

L.H.S =

tanθ−secθ+1

tanθ+secθ−1

We can write, sec

2

θ−tan

2

θ=1

=

tanθ−secθ+1

tanθ+secθ−(sec

2

θ−tan

2

θ)

=

tanθ−secθ+1

tanθ+secθ−(secθ−tanθ)(secθ+tanθ)

=

tanθ−secθ+1

(tanθ+secθ){1−(secθ−tanθ)}

=

tanθ−secθ+1

(tanθ+secθ){1−secθ+tanθ}

=tanθ+secθ

=

cosθ

sinθ + cosθ

=

cosθ

1+sinθ

= R.H.S

since L.H.S = R.H.S

tanθ−secθ+1

tanθ+secθ−1

=

cosθ

1+sinθ

Similar questions