Math, asked by aman62946, 1 year ago

tan theta + sec theta is equal to 1.5 find the value of sin theta, tan theta ,sec theta .​

Answers

Answered by Anonymous
47

Refer The attachment ⬆

****

Follow Me

Attachments:
Answered by wifilethbridge
39

Answer:

Sin \theta = \frac{Perpendicular}{Hypotenuse}=\frac{5}{13}\\Sin \theta = \frac{Perpendicular}{Base}=\frac{5}{12}\\Sec \theta = \frac{Hypotenuse}{Base}=\frac{13}{12}

Step-by-step explanation:

Given : tan\theta +sec\theta = 1.5

To Find : sin theta, tan theta ,sec theta .​

Solution :

tan\theta +sec\theta = 1.5

tan\theta +\sqrt{1+Tan^2 \theta} = 1.5

\sqrt{1+Tan^2 \theta} = 1.5-tan \theta

1+Tan^2 \theta= (1.5-tan \theta)^2

1+Tan^2 \theta=\frac{9}{4}+Tan^2\theta - 3 tan \theta

1-\frac{9}{4}= - 3 tan \theta

-\frac{5}{4}= - 3 tan \theta

\frac{5}{4}= 3 tan \theta

\frac{5}{12}= tan \theta

Tan \theta = \frac{Perpendicular}{Base}

On comparing Perpendicular = 5

Base = 12

Hypotenuse^2=Perpendicular^2+base^2

Hypotenuse^2=5^2+12^2

Hypotenuse=\sqrt{5^2+12^2}

Hypotenuse=13

Sin \theta = \frac{Perpendicular}{Hypotenuse}=\frac{5}{13}\\Sin \theta = \frac{Perpendicular}{Base}=\frac{5}{12}\\Sec \theta = \frac{Hypotenuse}{Base}=\frac{13}{12}

Similar questions