Math, asked by colourworld2525, 18 days ago

tan theta -sin square theta=cos square theta then show that sin square theta= 1/2

Answers

Answered by mathdude500
12

\large\underline{\sf{Given- }}

\rm \: tan\theta  -  {sin}^{2}\theta  =  {cos}^{2}\theta  \\

\large\underline{\sf{To\:show - }}

\rm \:  {sin}^{2}\theta  =  \dfrac{1}{2}  \\

\large\underline{\sf{Solution-}}

Given that,

\rm \: tan\theta  -  {sin}^{2}\theta  =  {cos}^{2}\theta  \\

\rm \: tan\theta   =  {sin}^{2}\theta +  {cos}^{2}\theta  \\

\rm\implies \:tan\theta  = 1 \\

\rm\implies \:tan\theta  = tan45 \degree \\

\rm\implies \:\theta  = 45 \degree \\

Now, Consider

\rm \:  {sin}^{2}\theta  \\

\rm \: =  \:   {sin}^{2}45 \degree \\

\rm \:  =  \:  {\bigg(\dfrac{1}{ \sqrt{2} } \bigg) }^{2}  \\

\rm \:  =  \: \dfrac{1}{2}  \\

Hence,

\rm\implies \:\boxed{ \rm{ \: {sin}^{2}\theta  \:  =  \:  \frac{1}{2} \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{sin(90 \degree - x) = cosx}\\ \\ \bigstar \: \bf{cos(90 \degree - x) = sinx}\\ \\ \bigstar \: \bf{tan(90 \degree - x) = cotx}\\ \\ \bigstar \: \bf{cot(90 \degree - x) = tanx}\\ \\ \bigstar \: \bf{cosec(90 \degree - x) = secx}\\ \\ \bigstar \: \bf{sec(90 \degree - x) = cosecx}\\ \\ \bigstar \: \bf{ {sin}^{2}x +  {cos}^{2}x = 1 } \\ \\ \bigstar \: \bf{ {sec}^{2}x -  {tan}^{2}x = 1  }\\ \\ \bigstar \: \bf{ {cosec}^{2}x -  {cot}^{2}x = 1 }\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions