Tan theta + sin theta = m and Tan theta - sin theta = n then prove that m square - n square = 4 whole root of mn
Answers
Answered by
0
Answer:
(Tan A +Sin A)^2 =m^2
(Tan A - Sin A)^2 = n^2
m^2-n^2= tan^2A+sin^2A+2tanAsinA-tan^2A -sin^2A+2tanAsinA
m^2-n^2 = 4tanAsinA or 4sin^2A/cosA................1
TanAsinA = sin^2A/cosA
(Tan A +Sin A)(Tan A - Sin A)= mn
Tan^2A-sin^2A = mn
sin^2A-sin^2Acos^2A/cos^2A = mn
sin^2A(1-cos^2A)/cos^2A = mn
sin^2A/cosA = √mn
put this value of sin^2A/cosA in equation 1
m^2-n^2 = 4√mn
HENCE PROVED
Similar questions