Math, asked by ctaraknath21, 7 months ago

TAN THETA + SIN THETA/TAN THETA - SIN THETA =SEC THETA + 1 / SEC THETA - 1​

Answers

Answered by Anonymous
5

Answer:

plz follow me and thanks my ans plz

Attachments:
Answered by Ataraxia
22

To Prove :-

\sf \dfrac{tan \theta + sin \theta } {tan \theta - sin \theta}= \dfrac{sec \theta+1}{sec \theta -1 }

Solution :-

\sf L.H.S = \dfrac{tan \theta + sin \theta}{tan \theta - sin \theta }

\bullet \bf \ tan \theta = \dfrac{sin \theta}{cos \theta}

        = \sf \dfrac{\dfrac{sin \theta }{cos\theta}+sin \theta}{\dfrac{sin \theta }{cos\theta}- sin \theta} \\\\= \dfrac{\dfrac{sin \theta+sin \theta cos \theta}{cos \theta}}{\dfrac{sin \theta - sin \theta cos \theta}{cos\theta}} \\\\= \dfrac{sin \theta+sin \theta cos\theta}{cos \theta} \times \dfrac{cos\theta}{sin\theta - sin \theta cos \theta} \\\\= \dfrac{sin \theta + sin \theta cos \theta }{sin \theta - sin \thets cos \theta} \\\\= \dfrac{sin \theta (1+cos\theta)}{sin \theta (1-cos \theta}

         = \sf \dfrac{1+cos\theta}{1-cos\theta} \\\\= \dfrac{1+\dfrac{1}{sec\theta}}{1- \dfrac{1}{sec\theta}} \\\\= \dfrac{\dfrac{sec\theta+1}{sec\theta}}{\dfrac{sec\theta - 1}{sec\theta}} \\\\= \dfrac{sec\theta+1}{sec\theta} \times \dfrac{sec\theta}{sec\theta -1 }\\\\= \dfrac{sec\theta+1}{sec\theta - 1} \\\\= R.H.S

Hence proved.

Similar questions