Math, asked by sandip19, 1 year ago

tan theta/ tan (90°- theta) + sin (90° - theta)/cos theta= sec2 theta

Answers

Answered by shekhargangalp0r1tp
45
Tan theta/cot theta + cos theta/cos theta
=>sin2 theta/cos2 theta + 1
=>sin2 theta + cos2 theta/cos2 theta
=>1/cos2 theta
=>sec2 theta
Hence proved
Answered by jitumahi435
44

To prove that: \dfrac{\tan \theta}{\tan (90- \theta)} + \dfrac{\sin (90 - \theta)}{\cos \theta} =\sec^2 \theta.

Solution:

L.H.S. = \dfrac{\tan \theta}{\tan (90- \theta)} + \dfrac{\sin (90 - \theta)}{\cos \theta}

Using the trigonometric identity:

\cot \theta = \tan (90- \theta) and

\cos \theta = \sin (90- \theta)

= \dfrac{\tan \theta}{\cot \theta} + \dfrac{\cos \theta}{\cos \theta}

= \dfrac{\tan \theta}{\cot \theta} + 1

Using the trigonometric identity:

\tan \theta = \dfrac{1}{\cot \theta}

= \dfrac{\tan \theta}{\dfrac{1}{\tan \theta} } + 1

= \tan^2 \theta + 1

Using the trigonometric identity:

\sec^2 \theta - \tan^2 \theta = 1

\sec^2 \theta = 1 + \tan^2 \theta

= \sec^2 \theta

= R.H.S., proved.

Thus, \dfrac{\tan \theta}{\tan (90- \theta)} + \dfrac{\sin (90 - \theta)}{\cos \theta} =\sec^2 \theta, proved.

Similar questions