Math, asked by om731pcxyma, 1 year ago

tan theta upon 1 - cos theta + cot theta upon 1 - tan theta

Answers

Answered by abhaygoel71
22
here is your answer
Hope it is useful
Attachments:

abhaygoel71: in 5th step i have changed the sign of denominator
Answered by aquialaska
7

Answer:

Given Expression  =\:/frac{tan\,\theta}{1-cot\,\theta}+\frac{cot\,\theta}{1-tan\,\theta}    

To  simplify the expression

Consider,

\:/frac{tan\,\theta}{1-cot\,\theta}+\frac{cot\,\theta}{1-tan\,\theta}    

\implies\:\frac{\frac{sin\theta}{cos\theta}}{1-\frac{cos\theta}{sin\theta}}+\frac{\frac{cos\theta}{sin\theta}}{1-\frac{sin\theta}{cos\theta}}  

\implies\:\frac{\frac{sin\theta}{cos\theta}}{\frac{sin\theta-cos\theta}{sin\theta}}+\frac{\frac{cos\theta}{sin\theta}}{\frac{cos\theta-sin\theta}{cos\theta}}

\implies\:\frac{sin^2\theta}{cos\theta(sin\theta-cos\theta)}}+\frac{cos^2\theta}{sin\theta(cos\theta-sin\theta)}}

\implies\:\frac{sin^2\theta}{cos\theta(sin\theta-cos\theta)}}-\frac{cos^2\theta}{sin\theta(sin\theta-cos\theta)}}

\implies\:\frac{sin^3\theta-cos^3\theta}{sin\theta\,cos\theta(sin\theta-cos\theta)}}

\implies\:\frac{(sin\theta-cos\theta)(sin^2\theta+cos^2\theta+sin\theta\,cos\theta)}{sin\theta\,cos\theta(sin\theta-cos\theta)}}

\implies\:\frac{sin^2\theta+cos^2\theta+sin\theta\,cos\theta}{sin\theta\,cos\theta}}

\implies\:\frac{sin^2\theta}{sin\theta\,cos\theta}+\frac{cos^2\theta}{sin\theta\,cos\theta}+\frac{sin\theta\,cos\theta}{sin\theta\,cos\theta}}

\implies\:\frac{sin\theta}{cos\theta}+\frac{cos\theta}{sin\theta}+1

\implies\:\tan\theta+cot\theta+1

Similar questions