Math, asked by gungun4768, 1 year ago

tan theta upon 1 minus cot theta + cot theta upon 1 minus 10 theta is equals to 1 + sec theta cosec theta ​

Answers

Answered by SuperGuy
41

Answer:

As can be seen L.H.S=R.H.S

Attachments:
Answered by guptasingh4564
34

Hence Proved.

Step-by-step explanation:

Given,

\frac{tan\theta}{1-cot\theta} +\frac{cot\theta}{1-tan\theta}=1+sec\theta.cosec\theta

LHS:

\frac{tan\theta}{1-cot\theta} +\frac{cot\theta}{1-tan\theta}

=\frac{\frac{sin\theta}{cos\theta} }{1-\frac{cos\theta}{sin\theta} } +\frac{\frac{cos\theta}{sin\theta} }{1-\frac{sin\theta}{cos\theta} }

=\frac{sin^{2}\theta}{cos\theta(sin\theta-cos\theta)}-\frac{cos^{2}\theta}{sin\theta(sin\theta-cos\theta)}

=\frac{sin^{3}\theta-cos^{3}\theta}{sin\theta.cos\theta(sin\theta-cos\theta)}

=\frac{(sin\theta-cos\theta)(sin^{2}\theta+cos^{2}\theta+sin\theta.cos\theta)}{sin\theta.cos\theta(sin\theta-cos\theta)} (Using x^{3} -y^{3}=(x-y)(x^{2} +y^{2} +xy))

=\frac{(1+sin\theta.cos\theta)}{sin\theta.cos\theta} (∵ sin^{2}\theta+cos^{2}\theta=1 )

=1+\frac{1}{sin\theta.cos\theta}

=1+sec\theta.cos\theta (∵ \frac{1}{sec\theta}=cos\theta\ and\ \frac{1}{cosec\theta}=sin\theta )

=RHS

Hence Proved.

Similar questions