Math, asked by om731pcxyma, 1 year ago

tan theta upon 1 minus cot theta + cot theta upon 1 - tan theta

Answers

Answered by abhaygoel71
89
Here is your answer
Hope it is useful
Attachments:

abhaygoel71: nice
abhaygoel71: good
abhaygoel71: what about you
abhaygoel71: how did you get to know about me?
abhaygoel71: ok
Answered by aquialaska
24

Answer:

Value of given Expression is cosec\,\theta\:sec\,\theta}+1

Step-by-step explanation:

Given Expression:

\frac{tan\,\theta}{1-cot\,\theta}+\frac{cot\,\theta}{1-tan\,\theta}

To find: Value of the given expression.

Consider,

\frac{tan\,\theta}{1-cot\,\theta}+\frac{cot\,\theta}{1-tan\,\theta}

=\frac{\frac{sin\,\theta}{cos\,\theta}}{1-\frac{cos\,\theta}{sin\,\theta}}+\frac{\frac{cos\,\theta}{sin\,\theta}}{1-\frac{sin\,\theta}{cos\,\theta}}

=\frac{\frac{sin\,\theta}{cos\,\theta}}{\frac{sin\,\theta-cos\,\theta}{sin\,\theta}}+\frac{\frac{cos\,\theta}{sin\,\theta}}{\frac{cos\,\theta-sin\,\theta}{cos\,\theta}}

=\frac{sin^2\,\theta}{cos\,\theta(sin\,\theta-cos\,\theta)}+\frac{cos^2\,\theta}{sin\,\theta(cos\,\theta-sin\,\theta)}

=\frac{sin^3\,\theta-cos^3\,\theta}{sin\,\theta\:cos\,\theta(sin\,\theta-cos\,\theta)}

=\frac{(sin\,\theta-cos\,\theta)(sin^2\,\theta+cos^2\,\theta+sin\,\theta\:cos\,\theta)}{sin\,\theta\:cos\,\theta(sin\,\theta-cos\,\theta)}

=\frac{1+sin\,\theta\:cos\,\theta}{sin\,\theta\:cos\,\theta}

=\frac{1}{sin\,\theta\:cos\,\theta}+\frac{sin\,\theta\:cos\,\theta}{sin\,\theta\:cos\,\theta}

=cosec\,\theta\:sec\,\theta}+1

Therefore, Value of given Expression is cosec\,\theta\:sec\,\theta}+1

Similar questions