Math, asked by PNVTEJ666, 10 months ago

tan theta + vot theta = sec theta . cosec theta​

Answers

Answered by kaushik05
28

   \red{\huge \: \mathfrak{solution}}

To prove :

 \tan( \alpha )  +   \cot( \alpha )  =  \sec( \alpha )  \csc( \alpha )

LHS

 \implies \:  \tan( \alpha )  +  \cot( \alpha )  \\  \\  \implies \:  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  +  \frac{ \cos( \alpha ) }{ \sin( \alpha ) }  \\  \\  \leadsto \:  \frac{ \sin {}^{2} ( \alpha ) +  \cos {}^{2} ( \alpha )  }{ \cos( \alpha ) \sin( \alpha )  }  \\  \\  \leadsto \frac{1}{  \cos( \alpha ) \sin( \alpha )  }  \\  \\  \leadsto \:  \sec( \alpha )  \csc( \alpha )

LHS = RHS

 \blue{\boxed{proved}}

Formula used

sin^2@+cos^2@= 1

tan@= sin@/cos@

cot@= cos@/sin@

cos@=1/sec@

sin@= 1/cosec@

Answered by Anonymous
6

Step-by-step explanation:

To Prove : tanθ + cotθ = secθ.cosecθ

L.H.S. : tanθ + cotθ

We know that,

tanθ = sinθ / cosθ

cotθ = cosθ / sinθ

\sf{\dfrac{sin\theta }{cos\theta} } +  {\dfrac{cos\theta}{sin\theta}}

\sf{\dfrac{ {sin}^{2} \theta \:  +  \:  {cos}^{2} \theta}{cos\theta.sin\theta}}

Identity : sin²θ + cos²θ = 1

\sf{\dfrac{1}{cos\theta.sin\theta}}

We know that,

1/cosθ = secθ

1/sinθ = cosecθ

secθ.cosecθ

= R.H.S.

Hence, proved !!

Similar questions