Math, asked by esaahmed8256, 9 months ago

tan x = 1/5 and tan y = 1/239 prove that tan(4x-y)=1

Answers

Answered by vani110886
2

Answer:

sgngkrdj of 10% the end of the following link to the end I am not getting back to you

Answered by visalavlm
0

Answer:

Hence tan(4x - y) = 1

Step-by-step explanation:

Given that

tan(x) = 1/5,  and tan(y) = 1/239

We have to prove that tan(4x - y) = 1

We know that, tan(x - y) = tan(x) - tan(y)/ 1 + tan(x)tan(y)

tan(x -y) = \frac{tan(x) - tan(y)}{1+tan(x)tan(y)}

tan(4x - y) = tan(4x) -tan(y)/1 + tan(4x)tan(y)

tan(2x) = 2tan(x)/1 - tan²(x) = 2(1/5)/1 - (1/5)²

tan(2x) = \frac{2tan(x)}{1-tan^{2}(x) } = \frac{2\frac{1}{5} }{1-(\frac{1}{5})^{2}  } = \frac{2}{5}*\frac{1}{1-\frac{1}{25} }  = \frac{2}{5} *\frac{25}{24} =\frac{5}{12}

tan(4x) = \frac{2tan(2x)}{1-tan^{2}(2x) } =\frac{2*\frac{5}{12} }{1-(\frac{5}{12})^{2}  } =\frac{5}{6} \frac{144}{144-25} =\frac{120}{119}

tan(4x-y) = \frac{\frac{120}{119}-\frac{1}{239}  }{1+\frac{120}{119}*\frac{1}{235}  } = \frac{(120)(239)-119}{(119)(239)+120} = \frac{28680-119}{28441+120} =\frac{28561}{28561} =1

Therefore, tan(4x - y) = 1

Similar questions