tan x/1-cot x +cot x/1-tan x =1+sec x.cosec x
Answers
Answered by
0
LHS;
tanx / 1-cotx =
- sinx / cosx × sinx / (sinx - cosx). (as tanA = sinA/cosA) (as cotA = cosA/sinA)
- sin²x / cosx (sinx - cosx)
cotx / 1-tanx =
- cosx / sinx × cosx / (cosx - sinx). (as tanA = sinA/cosA) (as cotA = cosA/sinA)
- cos²x / sinx (cosx - sinx)
Thus RHS would be ;
- sin²x / cosx (sinx - cosx) + cos²x / sinx (cosx - sinx)
- sin²x / cosx (sinx - cosx) - cos²x / sinx (-cosx + sinx)
- sin³x / cosx × sinx (sinx - cosx) - cos³x / cosx × sinx (sinx - cosx)
- sin³x - cos³x / cosx × sinx (sinx - cosx)
- (sinx - cosx) ( sin²x + cos²x + sinx•cosx ) / cosx•sinx (sinx - cosx)
- ( sin²x + cos²x + sinx•cosx ) / cosx•sinx
- 1 + sinx•cosx / sinx•cosx. (as sin²A + cos²A = 1)
- 1/ sinx•cosx + sinx•cosx / sinx•cosx
- secx•cosecx + 1 (as sinA = 1/cosecA). (as cosA = 1/secA)
- = RHS
hence proved
#answerwithquality
#BAL
Similar questions