Tan x ( 1+sec2x)(1+sec4x)(1+sec8x) is equal to
Answers
Answer:
Tan8x
Step-by-step explanation:
Tanx(1 + Sec2x)(1 + Sec4x)(1 + Sec8x)
= Tanx(1 + Cos2x)(1 + Cos4x)(1 + Cos8x) / Cos2x * Cos4x * Cos8x
Remember 1 + Cos2x = 2Cos²x and extend it to cos4x and cos8x as well.
= Tanx(2Cos²x)(2Cos²2x)(2Cos²4x)/ Cos2x * Cos4x * Cos8x
= 8 Tanx(Cos²xCos2x.Cos4x)/Cos8x.
= 8 SinxCosxCos2x.Cos4x / Cos8x
Remember Sin2x = 2SinxCosx
= 4Sin2xCos2xCos4x/Cos8x
= 2. Sin4xCos4x/Cos8x
= Sin8x/Cos8x
= Tan8x.
Concept
Trigonometry is a branch of mathematics which is based on specific function of angles and their applications.
Find
tanx( 1+sec2x)(1+sec4x)(1+sec8x)
Solution
tan x ( 1+sec2x)(1+sec4x)(1+sec8x)
secx = 1/cosx
sec2x = 1/cos2x
sec4x = 1/cos4x
sec8x = 1/cos8x
tanx(1 + cos2x)(1 + cos4x)(1 + cos8x) / cos2x * cos4x * cos8x
We know that
1 + cos2x = 2cos²x
1 + cos4x = 2cos²2x
1 + cos8x = 2cos²4x
= tanx(2cos²x)(2cos²2x)(2cos²4x)/ cos2x * cos4x * cos8x
= 8tanx(cos²xcos2x.cos4x)/cos8x.
tanx = sinx /cosx
= 8 sinxcosxcos2x.cos4x / cos8x
We also know that
sin2x = 2sinxcosx
sin4x = 2sin2xcos2x
sin8x = 2sin4xcos4x
So,
= 4 (2sinxcosx) cos2x cos4x/cos8x
= 4sin2x cos2x cos4x / cos8x
= 2(2sin2xcos2x)cos4x/cos8x
= 2sin4xcos4x/cos8x
=sin8x/cos8x
= tan8x
tanx( 1+sec2x)(1+sec4x)(1+sec8x) is equal to tan8x
#SPJ2