Math, asked by sudhanvasrk, 11 months ago

(tan x +1)/ tan x= sec^2 x

Answers

Answered by ʙʀᴀɪɴʟʏᴡɪᴛᴄh
9

Answer:

\huge{\fbox{\fbox{\bigstar{\mathfrak{\red{Answer}}}}}}

Starting from:⤵️⤵️

</p><p></p><p>{cos}^{2} (x)+ {sin}^{2} (x)=1</p><p></p><p>

Divide both sides by cos²(x) to get:

cos²(x) ÷ cos²(x) + sin²(x) ÷ cos²(x)=1 ÷ cos²(x)

which simplifies to:

1+tan²(x)=sec²(x)

..___________________________..

&lt;marquee&gt;✝︎ThePrinceAryan✝︎&lt;marquee&gt;

Answered by RvChaudharY50
8

||✪✪ CORRECT QUESTION ✪✪||

Prove That :- (tan²x +1)= sec^2x ?

|| ✰✰ ANSWER ✰✰ ||

we know That, sin²x + cos²x = 1

sin²x + cos²x = 1

Dividing both sides by cos²x we get,

(sin²x/cos²x) + (cos²x/cos²x) = (1/cos²x)

Now, putting (sinx/cosx) = tanx in LHS, and (1/cosx) = secx in RHS,

(Tan²x) + 1 = sec²x (Hence, Proved).

___________________

\mathbb{\red{SOME \: \green{TRIGONOMETRIC}\:  \pink{IDENTITIES}}}

\begin{lgathered}\begin{cases} \Longrightarrow  \sf \: \sin^{2}\theta+\cos^{2}\theta=1\\ \bf\Longrightarrow \sec^{2}\theta-\tan^{2}\theta=1\\ \bf\Longrightarrow \cosec^{2}\theta-\cot^{2}\theta=1\\ \end{cases}\end{lgathered}

Similar questions