tan x/2=tanh u/2 , prove that u = log tan (π/ 2 + x/2)
Answers
Answered by
8
Question :
If tan(x/2) = tanh(u/2), prove that
u = log tan(π/4 + u/2).
Proof :
Given, tan(x/2) = tanh(u/2)
⇒ tan(x/2) =
⇒ tan(x/2) =
⇒ tan(x/2) = (eᵘ - 1)/(eᵘ + 1)
⇒ eᵘ - 1 = (eᵘ + 1) tan(x/2)
⇒ eᵘ - 1 = eᵘ tan(x/2) + tan(x/2)
⇒ {1 - tan(x/2)} eᵘ = 1 + tan(x/2)
⇒ eᵘ = {1 + tan(x/2)}/{1 - tan(x/2)}
⇒ eᵘ =
⇒ eᵘ = tan(π/4 + x/2)
⇒ u = log tan(π/4 + x/2)
Hence, proved.
Rules :
• tanh(x) = {sinh(x)}/{cosh(x)}
• sinh(x) = (eˣ - e⁻ˣ)/2
• cosh(x) = (eˣ + e⁻ˣ)/2
• tan(A + B) = (tanA + tanB)/(1 - tanA tanB)
• eˣ = k ⇒ x = logₑk
Similar questions