tan x + 2tan 2x +4 tan 4x + 8tan 8x = ?
Answers
We know that,
So, ...(a)
We find,
=
=
=
= ...(i) , by (a)
Similarly,
...(ii)
...(iii)
...(iv)
Now,
= (tanx - cotx) + 2tan2x + 4tan4x + 8tan8x + cotx
= - 2cot2x + 2tan2x + 4tan4x + 8tan8x + cotx , by (i)
= 2 (tan2x - cot2x) + 4tan4x + 8tan8x + cotx
= 2 (- 2cot4x) + 4tan4x + 8tan8x + cotx , by (ii)
= 4 (tan4x - cot4x) + 8tan8x + cotx
= 4 (- 2cot8x) + 8tan8x + cotx , by (iii)
= 8 (tan8x - cot8x) + cotx
= 8 (- 2cot16x) + cotx , by (iv)
= ,
which is the required simplified value.
Answer:
-16 cot16x +cotx
Step-by-step explanation:
We know that,
tanx - cotx = sinx/cos - cosx/sinx
= (sin²x - cos²x)/sinx.cosx
= -(cos²x - sin²x)/sinx.cosx
= -2(cos²x - sin²x)/2sinx.cosx
= -2(cos2x)/sin2x
tanx- cotx = -2cot2x
This is an identity, because it is true for any value of x .
(Note:-
Putting x = 2x, We get,
tan2x - cot2x = -2cot4x
Putting x = 4x , We gate
tan4x - cot4x = -2cot8x
Similarly for more.
We have,
tanx + 2tan2x + 4tan4x + 8tan8x
(tanx -cotx) + 2tan2x + 4tan4x + 8tan8x + cotx
= -2cot2x + 2tan2x + 4tan4x + 8tan8x + cotx
= 2(tan2x - cot2x) + 4tan4x + 8tan8x + cotx
= 2.(-2cot4x) + 4tan4x + 8tan8x + cotx
= -4cot4x + 4tan4x + 8tan8x + cotx
= 4(tan4x - cot4x) + 8tan8x + cotx
= 4(-2cot8x) + 8tan8x + cotx
= -8cot8x +8tan8x + cotx
= 8(tan8x-cot8x) + cotx
= 8(-2cot16x) + cotx
= -16cot16x +cotx