Math, asked by srimantakumar2p1cwpd, 1 year ago

tan x + 2tan 2x +4 tan 4x + 8tan 8x = ?

Answers

Answered by Swarup1998
6
\underline{\bold{Simplification :}}

We know that, tan2x =\frac{2tanx}{1-tan^{2}x}

So, cot2x = \frac{1-tan^{2}x}{2tanx} ...(a)

We find, tanx - cotx

= tanx - \frac{1}{tanx}

= \frac{tan^{2}x-1}{tanx}

= - 2*\frac{1-tan^{2}x}{2tanx}

= - 2cot2x ...(i) , by (a)

Similarly,

tan2x - cot2x = - 2 cot4x ...(ii)

tan4x - cot4x = - 2 cot8x ...(iii)

tan8x - cot8x = - 2 cot16x ...(iv)

Now, \small{\bold{tanx + 2tan2x + 4tan4x + 8tan8x}}

= (tanx - cotx) + 2tan2x + 4tan4x + 8tan8x + cotx

= - 2cot2x + 2tan2x + 4tan4x + 8tan8x + cotx , by (i)

= 2 (tan2x - cot2x) + 4tan4x + 8tan8x + cotx

= 2 (- 2cot4x) + 4tan4x + 8tan8x + cotx , by (ii)

= 4 (tan4x - cot4x) + 8tan8x + cotx

= 4 (- 2cot8x) + 8tan8x + cotx , by (iii)

= 8 (tan8x - cot8x) + cotx

= 8 (- 2cot16x) + cotx , by (iv)

= \boxed{\bold{- 16cot16x + cotx}} ,

which is the required simplified value.
Answered by Shubhendu8898
6

Answer:

-16 cot16x +cotx

Step-by-step explanation:

We  know that,

tanx - cotx = sinx/cos - cosx/sinx

                 = (sin²x - cos²x)/sinx.cosx

                 = -(cos²x - sin²x)/sinx.cosx

                 = -2(cos²x - sin²x)/2sinx.cosx

                 = -2(cos2x)/sin2x

tanx- cotx = -2cot2x

This is an identity, because it  is  true for any value of  x .

(Note:-

Putting x = 2x, We  get,

tan2x - cot2x = -2cot4x

Putting x = 4x , We gate

tan4x - cot4x = -2cot8x

Similarly for  more.

We  have,

tanx + 2tan2x + 4tan4x + 8tan8x  

(tanx -cotx) + 2tan2x + 4tan4x + 8tan8x  + cotx

= -2cot2x + 2tan2x + 4tan4x + 8tan8x  + cotx

= 2(tan2x - cot2x) + 4tan4x + 8tan8x  + cotx

= 2.(-2cot4x) + 4tan4x + 8tan8x  + cotx

= -4cot4x + 4tan4x + 8tan8x  + cotx

= 4(tan4x - cot4x) + 8tan8x  + cotx

= 4(-2cot8x) + 8tan8x  + cotx

= -8cot8x +8tan8x + cotx

= 8(tan8x-cot8x) + cotx

= 8(-2cot16x) + cotx

= -16cot16x +cotx

Similar questions