Math, asked by Gurugan222, 1 month ago

tan x = 3/4, π < x < 3π/2
Find the value of sin x/2, cos x/2, tan x/2​

Answers

Answered by BrainlyTwinklingstar
1

Given,

\sf \dashrightarrow tan \: x = \dfrac{3}{4}, x \in \bf {III}_{Q}

Since,

\sf \dashrightarrow {sec}^{2} x = 1 + {tan}^{2} x

\sf \dashrightarrow 1 + \bigg( \dfrac{3}{4} \bigg)^{2}

\sf \dashrightarrow 1 + \dfrac{9}{16}

\sf \dashrightarrow {sec}^{2} x = \dfrac{25}{16}

\sf \dashrightarrow sec \: x = - \dfrac{5}{4} \: \: \: (\therefore \bf {III}_{Q})

\sf \dashrightarrow cos \: x = - \dfrac{4}{5}

\:

Since,

\sf \dashrightarrow \pi &lt; x &lt; \dfrac{3 \pi}{2}

\sf \dashrightarrow \dfrac{\pi}{2} &lt; \dfrac{x}{2} &lt; \dfrac{3 \pi}{4}

\sf \dashrightarrow \dfrac{x}{2} \in {Q}_{2}

\sf \dashrightarrow cos \dfrac{x}{2} = -  \sqrt{\dfrac{1 + cos \: x}{2}}

\sf \dashrightarrow - \sqrt{\dfrac{1 + \bigg(\dfrac{-4}{5} \bigg)}{2}}

\sf \dashrightarrow - \sqrt{\dfrac{\dfrac{1}{5}}{2}}

\sf \dashrightarrow - \dfrac{1}{\sqrt{10}}

\sf \dashrightarrow sin \dfrac{x}{2} = \sqrt{\dfrac{1 - cos \: x}{2}}

\:

\sf \dashrightarrow \sqrt{\dfrac{1 - \bigg( \dfrac{-4}{5} \bigg)}{2}}

\sf \dashrightarrow \sqrt{\dfrac{9}{10}} = \dfrac{3}{\sqrt{10}}

\sf \dashrightarrow tan \dfrac{x}{2} = \dfrac{sin \dfrac{x}{2}}{cos \dfrac{x}{2}}

\sf \dashrightarrow \dfrac{\dfrac{+3}{\sqrt{10}}}{\dfrac{-1}{\sqrt{10}}} = - 3

Similar questions