Math, asked by tejasoo3545, 11 months ago

Tan x=4/3 x, lies in the 3rd quadrant find the value of other 5 trigonometric function

Answers

Answered by anandssharmappplus
1

sec x = - 5/3,cos x= -3/5,sin x= - 4/5,cosec x= -5/3,cot x= -3/4

Step-by-step explanation:

√(1+ tan square x)= sec square x,

1/sec x = cos x

tan x = sin x /cos x,so sin x = tan x.cos x

and cot x = 1/tan x

signs are as for third quadrant only tans are positive, remaining all negative

Answered by BrainlyConqueror0901
2

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore sin\:x=\frac{-4}{5}}}

{\bold{\therefore cos\:x=\frac{-3}{5}}}

{\bold{\therefore cosec\:x=\frac{-5}{4}}}

{\bold{\therefore sec\:x=\frac{-5}{3}}}

{\bold{\therefore cot\:x=\frac{3}{4}}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \underline \bold{Given : } \\  \implies tan \: x =  \frac{4}{3}  \\  \\  \underline \bold{To \: Find : } \\  \implies sin \: x = ? \\  \\ \implies cos \: x = ? \\  \\ \implies cosec \: x = ? \\  \\ \implies sec\: x = ? \\  \\ \implies cot \: x = ?

• According to given qustion :

 \bold{tan \: x \: lies \: on \: 3 rd \: quadrant}  \\  \bold{So,  \: value \: of \: p \: and \: b\: are \: in \: negative} \\  \\  \implies tan \: x =   \frac{4}{3}  \\  \\  \implies tan \: x =  \frac{ - 4}{ - 3}  \\  \\  \bold{by \: phythagoras \: theoram : } \\  \implies  {h}^{2}  =  {p}^{2}  +  {b}^{2}  \\  \\  \implies  {h}^{2}  =  ({ - 4})^{2}  +  ({ - 3})^{2}  \\  \\   \implies  {h}^{2}  = 16 + 9 \\  \\  \implies  {h} =  \sqrt{25}  \\  \\   \bold{\implies h = 5 \: cm} \\  \\ \bold{For \: trignometric \: function : }  \\  \bold{sin \: x =  \frac{p}{h}  =  \frac{ - 4}{5} } \\  \\ \bold{cos\: x =  \frac{b}{h}  =  \frac{ - 3}{5} } \\  \\ \bold{cosec \: x =  \frac{h}{b}  =  \frac{ - 5}{4} } \\  \\  \bold{sec \: x =  \frac{h}{b}  =  \frac{ - 5}{3} } \\  \\ \bold{cot\: x =  \frac{h}{p}  =  \frac{ 3}{4} }

Similar questions