Math, asked by sr9014991, 4 months ago

tan x= -5/12,x lies in second quadrant ​

Answers

Answered by AssasianCreed
24

Question :-

  • tan x= -5/12,x lies in second quadrant

Given :-

  • tan x= -5/12

To find :-

  • Find the value of all trigonometric functions

Solution :-

\longrightarrow \sf \tan(x)  =  \dfrac{ - 5}{12}

\longrightarrow \sf \cot(x)  =  \dfrac{1}{ \tan(x) }  =  \dfrac{ - 5}{12}

\longrightarrow \sf   { \sec}^{2} x - 1 =  { \tan}^{2} x

\longrightarrow \sf { \sec}^{2} x =  { \tan }^{2} x + 1

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \dfrac{25}{144}  + 1

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \dfrac{25 + 144}{144}

\longrightarrow \sf{ \sec }^{2}x =  \dfrac{169}{144}

\longrightarrow \sf \sec(x)  =  \sqrt{ \dfrac{169}{144} }

\longrightarrow \sf \sec(x)  =  \dfrac{ - 13}{12}

\longrightarrow \sf \cos(x)  =  \dfrac{1}{ \sec(x) }  =  \dfrac{ - 12}{13}

\longrightarrow \sf{ \sin }^{2} x = 1 -  { \cos}^{2} x

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf = 1 -  \dfrac{144}{169}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf =  \dfrac{169 - 144}{169}

\longrightarrow \sf { \sin }^{2}x =  \dfrac{25}{169}

\longrightarrow \sf \sin(x)  =  \sqrt{ \dfrac{25}{169} }

\longrightarrow \sf\sin(x)  =  \dfrac{5}{13}

\longrightarrow \sf \csc(x)  =  \dfrac{1}{ \sin(x) }  =  \dfrac{13}{5}

Similar questions