Math, asked by piyalib244, 9 months ago

যদি tan x=a sin y ÷(1-a cos y) এবং tan y= b sin x÷(1-b cos x) হয়, তবে দেখাও যে, sin x÷sin y = a÷b​

Answers

Answered by rishu6845
21

\bold{\pink{\underline{\underline{Given}}}}\longrightarrow \\ tanx =  \dfrac{a \: siny}{1 - a \: cosy}  \:  \:  \:  \: and  \\ \: tany =  \dfrac{b \: sinx}{1 - b \: cosx}

\bold{\green{\underline{\underline{To \: prove}}}}\longrightarrow \\   \dfrac{sinx}{siny}  =  \dfrac{a}{b}

\bold{\blue{\underline{\underline{Concept \: used}}}}\longrightarrow \\ cot \alpha  =  \dfrac{1}{tan \alpha }

\bold{\red{\underline{\underline{Proof}}}}\longrightarrow \\ tanx =  \dfrac{a \: siny}{1 - a \: cosy}  \\  =  > cotx =  \dfrac{1 - a \: cosy}{a \: siny}  \\  =  > cotx =  \dfrac{1}{a \: siny}  -  \dfrac{a \: cosy}{a \: siny}  \\  =  > cotx =  \dfrac{1}{a \: sinx}  - coty \\  =  > cotx + coty =  \dfrac{1}{a \: sinx} .....(1)

now

tany =  \dfrac{b \: sinx}{1 - b \: cosx}  \\  =  > coty =  \dfrac{1 - bcosx}{b \: sinx}  \\  =  > coty =  \dfrac{1}{bsinx}  -  \dfrac{b \: cosx}{b \: sinx}  \\  =  > coty =  \dfrac{1}{bsinx}  - cotx \\  =  > cotx + coty =  \dfrac{1}{bsinx} .....(2)

by\:relation\:(1)\:and\:(2)\:we\:get\\\dfrac{1}{a\:siny}=\dfrac{1}{b\:sinx}\\=>b\:sinx=a\:siny\\=>\dfrac{sinx}{siny}=\dfrac{a}{b}

Answered by JanviMalhan
75

Step-by-step explanation:

Given :

 \sf{tanx =  \frac{a \: siny}{1 - a \: cosy}  \: and \: tany =  \frac{bsinx}{1 - bcosx}}

To Prove :

 \sf{  \frac{ \sin(x) }{ \sin(y) }}  =  \frac{a}{b}  \\  \\

Proof :

 \sf{ \tan(x )=  \frac{a \sin(y) }{1 - a \cos(y) }}  \\  \\  \\  \sf \implies \:  \cot(x) =  \frac{1 \: a \cos(y)}{a \sin(y) }   \\  \\   \sf\implies \:  \cot(x)  =  \frac{1}{a \sin(y) } -  \frac{a \cos(y) }{a \sin(y) }  \\  \\   \sf\implies \:  \cot(x)  =  \frac{1}{a \sin(x) }  -  \cot(y)  \\  \\  \sf \implies \:  \cot(x )+  \cot(y)  =  \frac{1}{a \sin(x) } .......(1)

 \sf{now} \\  \\  \sf \tan(y) =  \frac{b \sin(x) }{1 - b \cos(x) }   \\  \\ \sf  \implies \:  \cot(y)  =  \frac{1}{b \sin(x) }  -  \frac{b \cos(x) }{b \sin(x) }  \\  \\ \sf     \implies \:  \cot(x)  +  \cot(y)  =  \frac{1}{b \sin(x) } .........(2) \\  \\  \sf{ \frac{1}{a \sin(y)}} \:  =  \frac{1}{b \sin(x) }  \\  \\  \sf \implies \:  \:  \frac{ \sin(x) }{ \sin(y) }  =  \frac{a}{b}

Similar questions
Math, 1 year ago