Math, asked by jeevanachar, 6 months ago

tan x-tan y
15. Prove that tan(x - y) =
1+tan x tan y/1+tan x tan y

Answers

Answered by Anonymous
2

 \tt \fcolorbox{skyblue}{skyblue}{I \:  think \:  GIVEN \:  is \:  tan \:  x \:  - \:  tan y = \:  1 + tan x tan y}

PROOF :

 \sf \: We \:  \:  know,

 \mapsto  \:  \:  \: \sf \sin (x - y) =  \sin \: x \cos \: y -  \cos \: x \sin \: y \\

 \mapsto \:  \:  \sf \:  \cos(x - y) =  \cos \: x \cos \: y  +  \sin \: x \sin \: y \\

___________________________________

\sf \boxed {\tt \large{L \:  H \:  S}} \\  \\  \sf \tan \: (x - y) \\  \\     \implies \:  \sf \frac{ \sin \: (x - y)}{ \cos \: (x - y)}  \\  \\  \implies \sf  \frac{ \sin \: x \cos \: y -  \cos \: x \sin \: y}{ \cos \: x \cos \: y +  \sin \: x \cos \: y}  \\  \\  \implies \: \sf  \frac{ \sin \: x \cos \: y -  \cos \: x \sin \: y}{ \cos \: x \cos \: y +  \sin \: x \cos \: y} \times  \frac{ \frac{1}{ \cos \: x \cos \: y} }{ \frac{1}{ \cos \: x \cos \: y} }  \\  \\  \implies  \sf \:  \frac{ \tan \: x \:  -  \tan \: y}{1 +  \tan \: x \tan \: y}  \\  \\  \\ \sf \therefore \boxed {\tt \large{R\:  \: H\:  \: S}}

___________________________________

HOPE THIS IS HELPFUL...

Similar questions