Math, asked by mahammadsabir2110ms, 3 months ago

tan y dy/dx+tanx=cosycos2x

Answers

Answered by mathdude500
1

\large\underline{\sf{Correct \:Question - }}

 \sf \: Solve :  \: tany\dfrac{dy}{dx}  + tanx = cosy  \: {cos}^{2} x

\large\underline{\bold{Solution-}}

The given Differential equation is

 \sf \: \: tany\dfrac{dy}{dx}  + tanx = cosy  \: {cos}^{2} x

\rm :\longmapsto\: \bf \: Divide \: whole \: equation \: by \: cosy

\rm \:\: secy \: tany\dfrac{dy}{dx}  + secy \: tanx =  \: {cos}^{2} x -  - (1)

 \sf \: Put \: secy \:  = t\rm :\implies\:secy \: tany \: \dfrac{dy}{dx} \:  = \dfrac{dt}{dx}

So, equation (1) can reduced to

 \sf \: \dfrac{dt}{dx} + t \: tanx \:  =  {cos}^{2} x -  -  - (2)

This is linear differential equation,

 \bf \: On \:  comparing \: with \: \dfrac{dt}{dx} + pt \:  = q

we get

\rm :\longmapsto\:p \:  =  \: tanx

and

\rm :\longmapsto\:q \:  =  \:  {cos}^{2} x

So, Integrating Factor is given by

 \rm \: I.F.  \:  =  \:  {e}^{ \int \:p \: dx}

 \rm \: I.F.  \:  =  \:  {e}^{ \int \:tanx \: dx}

 \rm \: I.F.  \:  =  \:  {e}^{logsecx}  \:  \:  \:  \: \:  (\:  \because \:  \int \: tanxdx \:  =  \: logsecx \: )

\bf\implies \:I.F.  \:  =  \: secx \:  \:  \:   \:  \:  \: \: (\because \:  {e}^{logx}  = x)

Hence, Solution of equation (2) is given by

 \bf \: t \times I.F.  \:  =  \int \: (q \times I.F. )dx

On substituting the values, we get

 \rm \: t \: secx =  \int( {cos}^{2} x \times secx)dx

 \rm \:  t \: secx =  \int \: cosxdx

 \rm \: t \: secx = sinx \:  +  \: c

\bf\implies \:secy \: secx = sinx + c \:  \:  \:  \:  \:  \:  \: ( \because \: t \:  =  \: secy)

Similar questions