Math, asked by hemanthkumart, 10 months ago

tan0+sec0-1/tan0-sec0+1=1+sin0/cos0

Answers

Answered by MrBhukkad
26

 \huge{\bigstar}\huge{\mathcal{ \overbrace{ \underbrace{ \pink{ \fbox{ \green{ \blue{S} \pink{o} \red{l} \green{u} \purple{t} \blue{i} \green{o} \red{n}}}}}}}}  \huge{ \bigstar}

 \purple{ \underline{ \underline{ \mathbb{L.H.S.}}} } \\  \\   \bf{ \orange{Formulas \: used : -  }}\\ \boxed{ \bf{ {sec}^{2} \theta  -  {tan}^{2}  \theta = 1 }}  \\ \boxed{ \bf{ {a}^{2} -  {b}^{2} = (a + b)(a - b)  }}  \\ \\  \bf{ \red{(i) \:  \frac{tan \theta + sec \theta - 1}{tan \theta - sec \theta + 1} }} \\  =  \bf{ \frac{tan \theta + sec \theta - ( {sec}^{2}  \theta -  {tan}^{2} \theta )}{tan \theta - sec \theta + 1} } \\  =  \bf{ \frac{(sec \theta + tan \theta) - (sec \theta + tan \theta)(sec \theta - tan \theta)}{1 - sec \theta + tan \theta} } \\   = \bf{ \frac{(sec \theta + tan \theta)(1 - sec \theta + tan \theta)}{(1 - sec \theta + tan \theta)} } \\   = \bf{sec \theta + tan \theta} \\  =  \bf{ \frac{1}{cos \theta}  +  \frac{sin \theta}{cos \theta} } \\  =  \bf{ \frac{1 + sin \theta}{cos \theta} } =   \purple{ \underline{ \underline{ \mathbb{R.H.S.}}}}

Similar questions