tan10tan50+tan50tan70+tan70 tan170
Answers
Answered by
0
Answer:
Step-by-step explanation:
Tan10.tan50+tan50.tan70+tan70.tan170=3
tan170 = -Tan (180 - 170) = - Tan 10
=> LHS
= Tan10.tan50+tan50.tan70+tan70.(-Tan10)
= Tan10 . Tan (60-10) + Tan(60-10).Tan(60+10) - Tan(60+10)Tan10
= Tan10 ( Tan60 - Tan10)/(1 + Tan60Tan10) - Tan10(( Tan60 + Tan10)/(1 - Tan60Tan10) + ( Tan60 - Tan10)/(1 + Tan60Tan10)*( Tan60 + Tan10)/(1 - Tan60Tan10)
= Tan10 (Tan60 - Tan10 - Tan60Tan10(Tan60 - Tan10) - Tan60 - Tan10 -Tan60Tan10(Tan60 + Tan10))/(1-Tan²60Tan10) + (Tan²60 - Tan²10)/(1 - Tan²60Tan²10)
= Tan10(-2Tan10 -2Tan²60Tan10) + Tan²60 - Tan²10) /(1 - Tan²60Tan²10)
= (-2Tan²10 - 2Tan²60Tan²10 + Tan²60 - Tan²10)/(1 - Tan²60Tan²10)
Using Tan²60 = 3
= (-2Tan²10 - 2*3Tan²10 + 3 - Tan²10)/(1 - 3Tan²10)
= (3 - 9Tan²10)/(1 - 3Tan²10)
= 3(1 - 3Tan²10)/(1 - 3Tan²10)
Canceling (1 - 3Tan²10) from numerator & Denominator
= 3
= RHS
QED
Proved
Tan10.tan50+tan50.tan70+tan70.tan170=3
Hope it helps you.
Similar questions