Math, asked by triloksinghgaur, 11 months ago

tan15° kiske barabar hai?

Answers

Answered by jagabandhu28
0

Tan (15°) = sin 15/cos 15

Tan 15° = sin 15/cos 15

Sin 15° = sin (45 – 30)° and cos 15 = cos (45 – 30)°

∴ tan (15°) =  sin (45 – 30)° /cos (45 – 30)°

sin(A – B) = sin A cos B – cos A sin B

and cos (A – B) = cos A cos B + sin A sin B

Therefore,

tan (15°)= (sin 45° cos 30° – cos 45° sin 30°)/ (cos 45° cos 30° + sin 45° sin 30°)

Putting the values of sin 30°, sin 45°, cos 30° and cos 45°, we get,

tan 15° = (1/√2.√3/2 – 1/√2.½) / (1/√2.√3/2 + 1/√2.½)

Solving the above equation we have,

tan 15° = √3 – 1/ √3 + 1

Answered by shaurya1950
2

Answer:

tan (15°) ≈ 0.27

Step-by-step explanation:

Tan 15° = Tan(45 – 30)°

By the trigonometry formula, we know,

Tan (A – B) = (TanA – TanB) /(1 + Tan A Tan B)

Therefore, we can write,

tan(45 – 30)° = tan 45° – tan 30°/1+tan 45° tan 30°

Now putting the values of tan 45° and tan 30° from the table we get;

tan(45 – 30)° = (1 – 1/√3)/ (1 + 1.1/√3)

tan (15°) = √3 – 1/ √3 + 1

Hence, the value of tan (15°) is √3 – 1/√3 + 1.

We can further resolve the above-resulted expression by putting the value of √3, which is equal to 1.732.

∴ Tan (15°) = 1.732 – 1/1.732 + 1 = 0.2679

Or tan (15°) ≈ 0.27

Similar questions