tan15° kiske barabar hai?
Answers
Tan (15°) = sin 15/cos 15
Tan 15° = sin 15/cos 15
Sin 15° = sin (45 – 30)° and cos 15 = cos (45 – 30)°
∴ tan (15°) = sin (45 – 30)° /cos (45 – 30)°
sin(A – B) = sin A cos B – cos A sin B
and cos (A – B) = cos A cos B + sin A sin B
Therefore,
tan (15°)= (sin 45° cos 30° – cos 45° sin 30°)/ (cos 45° cos 30° + sin 45° sin 30°)
Putting the values of sin 30°, sin 45°, cos 30° and cos 45°, we get,
tan 15° = (1/√2.√3/2 – 1/√2.½) / (1/√2.√3/2 + 1/√2.½)
Solving the above equation we have,
tan 15° = √3 – 1/ √3 + 1
Answer:
tan (15°) ≈ 0.27
Step-by-step explanation:
Tan 15° = Tan(45 – 30)°
By the trigonometry formula, we know,
Tan (A – B) = (TanA – TanB) /(1 + Tan A Tan B)
Therefore, we can write,
tan(45 – 30)° = tan 45° – tan 30°/1+tan 45° tan 30°
Now putting the values of tan 45° and tan 30° from the table we get;
tan(45 – 30)° = (1 – 1/√3)/ (1 + 1.1/√3)
tan (15°) = √3 – 1/ √3 + 1
Hence, the value of tan (15°) is √3 – 1/√3 + 1.
We can further resolve the above-resulted expression by putting the value of √3, which is equal to 1.732.
∴ Tan (15°) = 1.732 – 1/1.732 + 1 = 0.2679
Or tan (15°) ≈ 0.27