tan15°*tan20°*tan70°*tan75°
Best Answer will be marked as Brainliest
Answers
tan(15o)
=tan(45o−30o)
As,
tan(A−B)=tan(A)−tan(B)1+tan(A)tan(B)
So,
tan(15o)=tan(45o)−tan(30o)1+tan(45o)tan(30o)
As, we know,
tan(45o)=1
tan(30o)=13√
So,
tan(15o)=1−13√1+13√
=3√−13√3√+13√
=3√−13√+1
=(3√−1)2(3√+1)(3√−1)
=3−23√+13−1
=4−23√2
⟹tan(15o)=2−3–√
Similarly,
tan(75∘)
=tan(45∘+30∘)
As,
tan(A+B)=tan(A)+tan(B)1−tan(A)tan(B)
So,
tan(75∘)=tan(45∘)+tan(30∘)1−tan(45∘)tan(30∘)
As, we know,
tan(45∘)=1
tan(30∘)=13√
So,
tan(75∘)=1+13√1−13√
=3√+13√3√−13√
=3√+13√−1
=(3√+1)2(3√−1)(3√+1)
=3+23√+13−1
=4+23√2
⟹tan(75∘)=2+3–√
Values of tan(20∘) and tan(70∘) cannot be found out simple analytically.
Here I have addresses of videos which explain in full how to find the value of tan(15∘) and tan(75∘).
Answer:
1
Step-by-step explanation:
tan 15° tan 20° tan 70° tan 75°
{∴ tan(90 - Ф) = cot Ф}
⇒ tan(90 - 75) tan 20° tan(90 - 20) tan 75°
⇒ cot 75° tan 20° cot 20° tan 75°
⇒ (1/tan 75°) tan 20° (1/tan 20°) tan 75°
{∴ 1/tanФ = cotФ}
⇒ 1
Hope it helps!