Math, asked by ja4v1s02, 7 months ago

tan²∅ - sec²∅/ cot²∅ - cosec²∅ =?​

Answers

Answered by aasthaporwal47
1

Answer:

Let theeta = a

tan²∅ - sec²∅/ cot²∅ - cosec²∅

 \frac{ \frac{ { \sin}^{2} (a)}{ { \cos }^{2}(a) }  -  \frac{1}{ { \cos}^{2} (a)} }{ \frac{ { \cos}^{2} (a)}{ { \sin }^{2} (a)} -  \frac{1}{  { \sin}^{2} (a)}  }  \\  =  \frac{ \frac{  { \sin(a) }^{2}  - 1}{ { \cos(a) }^{2} } }{ \frac{  { \cos(a) }^{2}  - 1}{ { \sin(a) }^{2} } }  \\  =  \frac{ \frac{ -  {( \cos(a) }^{2} )}{  { \cos(a) }^{2} } }{ \frac{ - ( { \sin(a) }^{2} )}{ { \sin(a) }^{2} } }  \\  =  \frac{ - 1}{ - 1}  = 1

Hence, tan²∅ - sec²∅/ cot²∅ - cosec²∅ = 1

Similar questions