Math, asked by rahulchandrc, 2 months ago

tan² theta = 1- e² the prove that sec theta + tan³theta × cosec theta = (2- e²)²/³​

Answers

Answered by sandy1816
4

\huge\underline\bold\red{★Answer★}

given \:  \:  \:  {tan}^{2} \theta = 1 -  {e}^{2}   \\ lhs \\   = sec \theta +  {tan}^{3}   \theta cosec \theta  \\  =  \sqrt{1 +  {tan}^{2}  \theta }  +  {tan}^{2}  \theta \: tan \theta \: ( \sqrt{1 +  {cot}^{2} \theta  }   \:  \:  ) \\  =  \sqrt{1 +  {tan}^{2}  \theta }  +  {tan}^{2}  \theta \: tan \theta \ \sqrt{1 +  { \frac{1}{tan  ^{2} \theta } }}    \\  =  \sqrt{1 + 1 -  {e}^{2} }  + (1 -  {e}^{2} )( \sqrt{1 -  {e}^{2} } \:  )\sqrt{1 +  \frac{1}{1 -  {e}^{2} } } \:   \\  =  \sqrt{2 -  {e}^{2} }  + (1 -  {e}^{2} ) \sqrt{1 -  {e}^{2} }  \sqrt{ \frac{1 -  {e}^{2} + 1 }{1 -  {e}^{2} } }  \\  =  \sqrt{2 -  {e}^{2} }  +( 1 -  {e}^{2} ) \sqrt{1 -  {e}^{2} } ( \frac{ \sqrt{2 -  {e}^{2} } }{ \sqrt{1 -  {e}^{2} } } ) \\  =  \sqrt{2 -  {e}^{2} }  + (1 -  {e}^{2} ) \sqrt{2 -  {e}^{2} }  \\  =  \sqrt{2 -  {e}^{2} } (1 + 1 -  {e}^{2} ) \\  =  \sqrt{2 -  {e}^{2} } (2 -  {e}^{2} ) \\  = (2 -  {e}^{2} ) ^{ \frac{1}{2}  + 1}  \\  = (2 -  {e}^{2} ) ^{ \frac{3}{2} }

Similar questions