(tan² theta)(cos² theta) = 1-cos² theta solve that
Answers
To prove---> (tan²θ )(cos²θ ) = 1-cos²θ
Proof--->(tan²θ)(cos²θ)
=>(sin²θ/cos²θ)(cos²θ)
=>sin²θ
=>1-cos²θ=RHS
Hope it helps buddy
mark the brainliest and click the thanks button
And don't forget to follow me.
To prove: (Tan² theta)(Cos² theta) = 1-Cos² theta
Proof:
As we know that,
Tan theta = Sin theta/Cos theta
Therefore,
Tan² theta= (Sin theta/Cos theta)²
Tan² theta=Sin² theta/Cos² theta
According To Que,
(Tan² theta)(Cos² theta) = 1-Cos² theta
(Sin² theta/Cos² theta) Cos² theta= 1-Cos² theta
Cos² theta will cancel by Cos² theta, And we get
Sin² theta =1-Cos² -(1)
According to identity,
•Sin² theta + Cos² theta=1
Sin² theta= 1- Cos² theta
Putting this value in equation (1) , We get
1-Cos² theta= 1- Cos² theta
LHS=RHS
Hence Proved.