Math, asked by siddnee2002, 10 months ago

tan20° + 2 tan50° =​

Answers

Answered by Anonymous
1

SOLUTION:-

Given:

tan20° + 2tan50°

Proof:

We know that, 20 +50= 70

Taking tan on both sides, we get;

tan(20+50)= tan70.

 \frac{(tan20 + tan50)}{(1 - tan20.tan50)}  = tan70 \:  \:  \: [∵tan \:(a + b) =  \frac{(tana + tanb)}{(1 - tan \: a.tanb)} )] \\  \\  =  > tan20 + tan50 = tan70 \times (1 - tan20.tan50) \\  \\  =  > tan20 + tan50 = tan70 - tan20.tan50.tan70 \\  \\  =  > tan20 + tan50 = tan70 - tan20tan50cot20 \:  \:  \:  \: [tan70 = tan(90 - 20) = cot20] \\  \\  =  > tan20 + tan50 = tan70 - tan20.tan50.( \frac{1}{tan20} ) \:  \:  \:  \:[∵cot20 =  \frac{1}{tan20} ]\\  \\   =  > tan20 + tan50 = tan70 - tan50 \\  \\  =  > tan20 + tan50 + tan50 = tan70 \\  \\  =  > 2tan5 0 + tan20 = tan70 \\  \\  =  > 2tan50 + tan20 = cot20 \:  \:  \:  \:[∵tan70 = cot20]

Proved.

Hope it helps ☺️

Similar questions