Math, asked by harshtongar, 10 months ago

tan20°+2tan50°=tan70°​

Answers

Answered by guptavrinda656
1

Answer:

tan70°=tan(50°+20°)  

Using formula

tan(A+B)=tanA+tanB1−tanA×tanB

tan70°=tan50°+tan20°1−tan50°×tan20°

tan70°−tan70°tan50°tan20°=tan50°+tan20°

tan70°=tan20°+tan50°+tan70°tan50°tan20°

tan70°=tan20°+tan50°(1+tan70°×tan20°)

tan70°=tan20°+tan50°(1+tan(90°−20°)×tan20°)

tan70°=tan20°+tan50°(1+cot20°×tan20°)

tan70°=tan20°+tan50°(1+tan20°tan20°)

Since (cotθ=1tanθ)

tan70°=tan20°+tan50°(1+1)

tan70°=tan20°+2tan50°

Hence proved

Answered by chnageswarr
3

Step-by-step explanation:

PLEASE MARK IT AS A BRAINLIEST ANSWER AND FOLLOW ME

Attachments:
Similar questions