tan20°+2tan50°=tan70°
Answers
Answered by
1
Answer:
tan70°=tan(50°+20°)
Using formula
tan(A+B)=tanA+tanB1−tanA×tanB
tan70°=tan50°+tan20°1−tan50°×tan20°
tan70°−tan70°tan50°tan20°=tan50°+tan20°
tan70°=tan20°+tan50°+tan70°tan50°tan20°
tan70°=tan20°+tan50°(1+tan70°×tan20°)
tan70°=tan20°+tan50°(1+tan(90°−20°)×tan20°)
tan70°=tan20°+tan50°(1+cot20°×tan20°)
tan70°=tan20°+tan50°(1+tan20°tan20°)
Since (cotθ=1tanθ)
tan70°=tan20°+tan50°(1+1)
tan70°=tan20°+2tan50°
Hence proved
Answered by
3
Step-by-step explanation:
PLEASE MARK IT AS A BRAINLIEST ANSWER AND FOLLOW ME
Attachments:
Similar questions