tan20° + 4 sin20°= 3^1/2
Answers
Hey Pretty Stranger!
Here we have to prove that tan20° + 4sin20° = √3
Uhh.. uhh.. why do we need to prove everything, well, let's do it ._.
→ tan20 + 4sin20
→ sin20/cos20 + 4sin20
→ (sin20 + 4sin20cos20)/cos20
→ sin 20 + 2 sin 40)/ cos 20
→ (sin 20 + 2 sin (60-20))/ cos 20
→ ( sin 20 + 2 sin 60 cos 20 - 2 cos 60 sin 20)/ cos 20
→ (sin 20+ 2 sin 60 cos 20 - sin 20)/ cos 20
→ 2 sin 60cos 20/ cos 20
→ 2 sin 60
→ 2(√3/2)
→ √3
Yayyy, We did it!
Answer:
tan20° + 4 sin20°
= sin20/cos20 + 4 sin20°
= (sin20° +4sin20° +cos20° ) / cos20°
= (sin20° +2sin40°) / cos20°
= (sin20° + 2sin(60-20)) / cos20°
= sin20°+ 2sin60° cos20° - 2sin20° cos60° / cos20°
= sin20° + 2(√3/2) cos 20° - 2sin20° (1/2) / cos20°
= sin 20+ √3 cos20° - sin20° / cos20°
= √3 cos20° / cos20°
= √3 = (3)^1/2
Step-by-step explanation:
Hope it helps you :)