tan2A=2 tanA/1- tan^ A
Answers
Answered by
2
Answer:
tanA = sinA/cosA
therefore,
tan (2A) = sin(2A) / cos(2A)
tan2A = 2 sinA*cosA ÷ (cos²A - sin²A)
Dividing both numerator and denominator by cos²A
= 2 (sinAcosA /cosA) ÷ [(cos²A/cos²A)-(sin²A/cos²A)]
= 2 (sinA/cosA) ÷ [(1- sin²A/cos²A)]
= 2 tanA ÷ [1- (sinA/cosA)²]
= 2tanA/1-tan²A
hence, proved
Similar questions