Math, asked by diyamjmdr, 11 months ago

tan2A/(secA-1)^2=1+cosA/1-cosA

Answers

Answered by sdmsandy72
1

1 + cos A/ 1 - cos A = tan²A/(secA - 1)² 

LHS = (1 + cos A)/ (1 - cos A) 

RHS = tan²A/(secA - 1)²

= [tanA/(sec-1)]^2

= [tanA/((1/cosA)-1)]^2

= [tanA/(1-cosA)/cosA]^2

= [(tanA*cosA)/(1-cosA)]^2

= [sinA/(1-cosA)]^2

= sinA^2/(1-cosA)^2

= (1-cosA^2)/(1-cosA)^2

= [(1-cosA)*(1+cosA)]/[(1-cosA)*(1-cosA)]

= (1+cosA)/(1-cosA) 

LHS = RHS 

Similar questions