Math, asked by lamaheetman, 2 months ago

tan²A - sin²A =sin²A.tan²A​

Answers

Answered by tinkik35
1

Answer:

To proof:

tan²A - sin²A = tan² A sin²A

from LHS,

tan²A -sin²A

= (sin²A / cos²A) - sin²A……[tan A=sin A/cos A]

= (sin²A - sin²Acos²A) / cos²A

= sin²A (1- cos²A) / cos² A [tan A = sinA / cos A]

= tan²A sin²A= RHS

.•. hence proved

Similar questions