Math, asked by anjani52, 1 year ago

tan2a-tan2b=cos2b-cos2a/cos2acos2b​

Attachments:

Answers

Answered by Gurbrahm
26

I hope this helps !!

If you got the Answer, then pls mark me Brainliest !!

Attachments:

anjani52: thanks bhai
Gurbrahm: np
Gurbrahm: can you mark me Brainliest
Answered by amirgraveiens
20

Proved below.

Step-by-step explanation:

Given:

tan^2a-tan^2b=\frac{cos^2b-cos^2a}{cos^2bcos^2a}

LHS = tan^2a-tan^2b        

       = \frac{sin^2a}{cos^2a} -\frac{sin^b}{cos^2b}   [∵ tan^2a=\frac{sin^2a}{cos^2a}, tan^2b= \frac{sin^2b}{cos^2b}]

       = \frac{sin^2a \times cos^2b - sin^2b\times cos^2a}{cos^2a \times cos^2b}

      = \frac{(1-cos^2a)\times cos^2b - (1 - cos^2b) \times cos^2a}{cos^2a \times cos^2b}                [ ∵ sin^2a+cos^a=1 ]

      = \frac{cos^2b - cos^2a \times cos^2b - cos^2a + cos^2a \times cos^2b}{cos^2a \times cos^2b}

       = \frac{cos^2b - cos^2a}{cos^2a \timts cos^2b}

      = RHS.

Hence proved.

Similar questions