Math, asked by rahulraj08012002, 10 months ago

(tan²o + 1). Cas²o =1​

Answers

Answered by Anonymous
0

\huge\boxed{\fcolorbox{cyan}{grey}{Solution:-}}.

➡Proof Here ,

↪(Tan²0+1)(Cos²0)=1.

↪(Tan²0+1)(Cos²0)=1.➡Take L.H.S.

↪(Tan²0+1)(Cos²0)=1.➡Take L.H.S.= (Tan²0+1)(Cos²0).

[ We know , (Tan²x+1)=Sec²x ]

So,

= (Sec²0)(Cos²0).

= (Sec²0)(Cos²0).= (1/cos²0)(Cos²0).

= (Sec²0)(Cos²0).= (1/cos²0)(Cos²0).= 1.

That's Proved .

\huge\boxed{\fcolorbox{cyan}{grey}{Hopes it's helps u:-}}

➡Follow me.

Answered by kaushik05
29

 \huge \red{ \mathfrak{solution}}

To prove :

 \boxed{( {tan}^{2}  \alpha  + 1) \times  {cos}^{2}  \alpha  = 1}

Take LHS :

 \leadsto \: ( {tan}^{2}  \alpha  + 1) \times  {cos}^{2}  \alpha  \\  \\

As we know that :

 \blue{ \boxed{ \rightarrow \:  {sec}^{2}  \alpha  -  {tan}^{2}  \alpha  = 1}} \\  \\  \bold{ then} \\  \\    \green{\boxed{\rightarrow \:  {sec}^{2}  \alpha  = 1 +  {tan}^{2}  \alpha }}

now,

 \leadsto \:  {sec}^{2}  \alpha  \times  {cos}^{2}  \alpha

Again we know that :

  \pink{\boxed{cos \theta \:  =  \frac{1}{sec \theta} }}

 \leadsto \:  {sec}^{2}  \alpha   \times  \frac{1}{ {sec}^{2}  \alpha }  \\  \\  \leadsto \:  \cancel  \frac{ {sec}^{2} \alpha  }{ {sec}^{2} \alpha  }  \: 1 \\  \\  \leadsto \: 1

LHS= RHS

HENCE ,

  \boxed{ \red{\boxed { \bold{proved}}}}

Similar questions