(tan²o + 1). Cas²o =1
Answers
Answered by
0
.
➡Proof Here ,
↪(Tan²0+1)(Cos²0)=1.
↪(Tan²0+1)(Cos²0)=1.➡Take L.H.S.
↪(Tan²0+1)(Cos²0)=1.➡Take L.H.S.= (Tan²0+1)(Cos²0).
[ We know , (Tan²x+1)=Sec²x ]
So,
= (Sec²0)(Cos²0).
= (Sec²0)(Cos²0).= (1/cos²0)(Cos²0).
= (Sec²0)(Cos²0).= (1/cos²0)(Cos²0).= 1.
That's Proved .
➡Follow me.
Answered by
29
To prove :
◆
Take LHS :
As we know that :
now,
Again we know that :
LHS= RHS
HENCE ,
Similar questions