Math, asked by raghasreesundar, 1 month ago

tan²o cos²o =1-cos²o​

Answers

Answered by sadnesslosthim
55

To Prove :-

\sf : \; \implies tan^{2} \theta \; cos^{2} \theta = 1 - cos^{2} \theta

Proof :-

\sf : \; \implies tan^{2} \theta \; cos^{2} \theta = 1 - cos^{2} \theta

\sf : \; \implies tan^{2} \theta \times cos^{2} \theta = 1 - cos^{2} \theta

\sf : \; \implies \dfrac{sin^{2} \theta}{ cos^{2} \theta} \times cos^{2} \theta = 1 - cos^{2} \theta

\sf : \; \implies sin^{2} \theta\times 1 = 1 - cos^{2} \theta

\sf : \; \implies sin^{2} \theta  = 1 - cos^{2} \theta

\sf : \; \implies 1 - cos^{2} \theta  = 1 - cos^{2} \theta

\boxed{\bf{ \bigstar \;\; LHS = RHS }}

Hence Proved!

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━

More to know :-

\bullet\:\sf Trigonometric\:Values :\\\\\boxed{\begin{tabular}{c|c|c|c|c|c}Radians/Angle & 0 & 30 & 45 & 60 & 90\\\cline{1-6}Sin \theta & 0 & $\dfrac{1}{2} &$\dfrac{1}{\sqrt{2}} & $\dfrac{\sqrt{3}}{2} & 1\\\cline{1-6}Cos \theta & 1 & $\dfrac{\sqrt{3}}{2}&$\dfrac{1}{\sqrt{2}}&$\dfrac{1}{2}&0\\\cline{1-6}Tan \theta&0&$\dfrac{1}{\sqrt{3}}&1&\sqrt{3}&Not D{e}fined\end{tabular}}

Note : View the answer on https://brainly.in/question/42914643

Similar questions