Math, asked by anadijain, 8 months ago

tan2x - sin2x = tan2x sin2x


5)1)

Attachments:

Answers

Answered by ram4346
3

hope it would be helpful

Attachments:
Answered by Anonymous
1

\huge\underline\mathbb{\red Q\pink{U}\purple{ES} \blue{T} \orange{IO}\green{N :}}

Prove that : tan² x - sin² x = tan²x sin² x

\huge\underline\mathbb{\red S\pink{O}\purple{LU} \blue{T} \orange{IO}\green{N :}}

We should prove that LHS = RHS.

Take LHS = tan² x - sin² x

\sf\:⟹ tan^{2} \:  x - sin^{2} \:  x

  • \bf\: [ ↪ tan^{2} x = \frac{sin^{2} x}{cos^{2} x} ]

\sf\:⟹ \frac{sin^{2}x }{cos^{2} x} - sin^{2}

\sf\:⟹ sin^{2}x [ \frac{1}{cos^{2}x} - 1 ]

\sf\:⟹ sin^{2}x [ \frac{1 - cos^{2}x}{cos^{2}x} ]

  • \bf\: [↪ 1 - cos^{2} x = sin^{2}x ]

\sf\:⟹ sin^{2} x [\frac {sin^{2}x}{cos^{2}x}]

  • \bf\: [↪ \frac{sin^{2}x}{cos^{2}x} = tan^{2} x ]

\sf\:⟹ sin^{2}x  \: tan^{2} x

Hence, LHS = RHS

# IT IS PROVED...

⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇

Important identities :

\bf\:◼ \:  sin^{2}  \: θ + cos^{2} \:  θ = 1

\bf\:◼  \: sec^{2} \:  θ  -  tan^{2}  \: θ = 1

\bf\:◼  \: cosec^{2} \:  θ - cot^{2}  \: θ = 1

⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆

Similar questions