Math, asked by vedantgupta15954, 9 months ago

Tan3-1/tan-1=sec2+tan
prove it​

Answers

Answered by Isighting12
6

Step-by-step explanation:

\frac{tan^{3} θ - 1}{tanθ - 1} = sec^{2} θ + tanθ \\\\

LHS

=  \frac{(tanθ - 1)(tan^{2}θ + 1^{2} + tanθ(1))}{tanθ - 1}     \\\\\\= (tan^{2}θ + 1^{2} + tanθ(1))\\\\

                                                                                           sin^{2}θ  - tan^{2} θ = 1\\\\sin^{2}θ   = 1 +tan^{2} θ

= (sec^{2}θ + tanθ)\\\\

RHS

= (sec^{2}θ + tanθ)\\\\

Therefore LHS = RHS

                               HENCE PROVED

Similar questions