Math, asked by poojarisapphire, 20 days ago

tan³0-1/ tan 0-1 = sec²0 + tan0 Prove the following R. H S=L. H. S​

Answers

Answered by mathdude500
8

Appropriate Question :-

Prove that

\rm \: \dfrac{ {tan}^{3} \theta  - 1}{tan\theta  - 1}  =  {sec}^{2}\theta  + tan\theta  \\

\large\underline{\sf{Solution-}}

Consider, LHS

\rm \: \dfrac{ {tan}^{3} \theta  - 1}{tan\theta  - 1} \\

can be rewritten as

\rm \:=  \: \dfrac{ {tan}^{3} \theta  -  {1}^{3} }{tan\theta  - 1} \\

We know,

\boxed{\sf{  \:\rm \:  {x}^{3} -  {y}^{3} = (x - y)( {x}^{2} + xy +  {y}^{2}) \:  \: }} \\

So, using this identity in numerator, we get

\rm \: =  \:\dfrac{ \cancel{(tan\theta  - 1)} \: ( {tan}^{2}\theta  + tan\theta  + 1) }{ \cancel{tan\theta  - 1}}  \\

\rm \: =  \: {tan}^{2}\theta  + tan\theta  + 1 \\

\rm \: =  \:(1 +  {tan}^{2}\theta)  + tan\theta

We know,

\boxed{\sf{  \:\rm \:  {sec}^{2}x -  {tan}^{2}x = 1 \:  \: }} \\

So, using this identity, we get

\rm \: =  \: {sec}^{2}\theta  + tan\theta  \\

Hence,

\rm\implies \: \boxed{\sf{  \:\: \rm \: \dfrac{ {tan}^{3} \theta  - 1}{tan\theta  - 1}  =  {sec}^{2}\theta  + tan\theta \:  \:  \: }}  \\

\rule{190pt}{2pt}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions