tan30+tan 45+tan 60+tan 15
Answers
Answered by
2
hope it helps u dear
Attachments:
Anonymous:
if it helps u mark it brainliest
Answered by
5
Hey friend !
Here is your answer!
===============================
tan 30° + tan 45° + tan 60° + tan 15°
=> 1/√3 + 1 +√3 + tan 15°
=> Now solve the tan 15°
Let tan(15°) = tan(45°-30°)
We know that tan(A - B) = (tanA - tanB) /(1 + tan A tan B)
⇒tan(45°-30°) = (tan45°- tan30°)/(1+tan45°tan30°)
= {1- (1/√3)} / {1+(1/√3)}
∴ tan15° = (√3 - 1) / (√3 + 1)
Then,
1/√3 + 1 +√3 + tan 15°
=>
1/√3 + 1 +√3 +(√3 - 1) / (√3 + 1)
Now take LCM √3(√3+1)
[√3+1 +√3(√3+1) + √3×√3 ×(√3+1)+√3(√3-1) ]. / √3(√3+1)
[√3+1 +3+√3 +3√3+3 +3-√3] /3+√3
Now cancelled +√3 &-√3
=>
[√3+3√3 +10] / 3+√3
[4√3 +10] / 3+ √3
Put the value of √3= 1.73
[4×1.73 +10] / 3+ 1.73
[6.92 +10] /4.73
=> 16.92 / 4.73
=> 3.43 Answer
================================
Hope it's helpful!
Here is your answer!
===============================
tan 30° + tan 45° + tan 60° + tan 15°
=> 1/√3 + 1 +√3 + tan 15°
=> Now solve the tan 15°
Let tan(15°) = tan(45°-30°)
We know that tan(A - B) = (tanA - tanB) /(1 + tan A tan B)
⇒tan(45°-30°) = (tan45°- tan30°)/(1+tan45°tan30°)
= {1- (1/√3)} / {1+(1/√3)}
∴ tan15° = (√3 - 1) / (√3 + 1)
Then,
1/√3 + 1 +√3 + tan 15°
=>
1/√3 + 1 +√3 +(√3 - 1) / (√3 + 1)
Now take LCM √3(√3+1)
[√3+1 +√3(√3+1) + √3×√3 ×(√3+1)+√3(√3-1) ]. / √3(√3+1)
[√3+1 +3+√3 +3√3+3 +3-√3] /3+√3
Now cancelled +√3 &-√3
=>
[√3+3√3 +10] / 3+√3
[4√3 +10] / 3+ √3
Put the value of √3= 1.73
[4×1.73 +10] / 3+ 1.73
[6.92 +10] /4.73
=> 16.92 / 4.73
=> 3.43 Answer
================================
Hope it's helpful!
Similar questions