Math, asked by Arati123, 11 months ago

tan32 + tan88/1-tan32*tan88

Answers

Answered by Anonymous
1

Answer:

it is the formula of tan (32 + 88)

because,

tan (A +B) = (tan A +tanB)/ (1- tanAtanB)

so, tan (32+88) = tan 120 = √3

Answered by pulakmath007
2

\displaystyle \sf{  \frac{tan \:  {32}^{ \circ} + tan \:  {88}^{ \circ} }{1 -tan \:  {32}^{ \circ}  tan \:  {88}^{ \circ} }   }=  -  \sqrt{3}

Given :

The expression

\displaystyle \sf{  \frac{tan \:  {32}^{ \circ} + tan \:  {88}^{ \circ} }{1 -tan \:  {32}^{ \circ}  tan \:  {88}^{ \circ} }   }

To find :

The value of the expression

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

\displaystyle \sf{  \frac{tan \:  {32}^{ \circ} + tan \:  {88}^{ \circ} }{1 -tan \:  {32}^{ \circ}  tan \:  {88}^{ \circ} }   }

Step 2 of 2 :

Find the value of the expression

We use the formula

\displaystyle \sf{  \frac{tan \: A + tan \:  B }{1 -tan \: A \:   tan \:  B }    = tan(A + B)}

Take A = 32° & B = 88°

Thus we get

\displaystyle \sf{  \frac{tan \:  {32}^{ \circ} + tan \:  {88}^{ \circ} }{1 -tan \:  {32}^{ \circ}  tan \:  {88}^{ \circ} }   }

\displaystyle \sf{  =  tan \:  ({32}^{ \circ} + {88}^{ \circ} )  }

\displaystyle \sf{  =  tan \: {120}^{ \circ}   }

\displaystyle \sf{  =   -  \sqrt{3}    }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. value of(1+tan13)(1+tan32)+(1+tan12)(1+tan33)

https://brainly.in/question/23306292

2. Find the value of p if

3cosec2A(1+COSA)(1 - COSA) =p

https://brainly.in/question/23381523

Similar questions