∫tan32x sec2x dx = __________.
Answers
Answered by
0
Step-by-step explanation:
LetI=∫tan
3
2x.sec2xdx
=∫tan
2
2x.sec2x.tan2xdx
=∫(sec
2
2x−1)sec2x.tan2xdx
Put sec2x=t
2sec2x.tan2xdx=dt
Now sec2x.tan2xdx=
2
dt
I=
2
1
∫(t
2
−1)dt
=
2
1
[
3
t
3
−t]+C
=
2
1
[
3
sec
3
2x
−sec2x]+C
Similar questions