Math, asked by satis30, 9 months ago

tan37 1/2= √6+√3-√2-2​

Answers

Answered by shreydockara
0

Answer:

i am sorry idk but pls answer this

Step-by-step explanation:

5∠A = 3∠B = ∠C, ∠A and ∠B are complementary angles, then the measure of ∠A, ∠B and

∠C are respectively

Answered by rajeevr06
9

we know that

 \frac{1 -  \cos(75) }{1 +  \cos(75) }  =  \tan {}^{2} ( \frac{75}{2} ) .....(i)

Now,

 \cos(75)  =  \cos(45 + 30)  =   \frac{ \sqrt{3}  - 1}{2 \sqrt{2} }

From (i),

 \tan {}^{2} ( \frac{75}{2} )  =  \frac{1 -  \frac{ \sqrt{3} - 1 }{2 \sqrt{2} } }{1 +  \frac{ \sqrt{3} - 1 }{2 \sqrt{2} } }  =  \frac{2 \sqrt{2}  -  \sqrt{3}  + 1}{2 \sqrt{2}  +  \sqrt{3} - 1 }  =\frac{2 \sqrt{2}  -  \sqrt{3}  + 1}{2 \sqrt{2}  +  \sqrt{3} - 1 }  \times \frac{2 \sqrt{2}  -  \sqrt{3}  + 1}{2 \sqrt{2}   -  \sqrt{3}  +  1 }  = \frac{(2 \sqrt{2}  -  \sqrt{3}  + 1) {}^{2} }{(2 \sqrt{2}) {}^{2} - ( \sqrt{3}  - 1) {}^{2}    }  = \frac{(2 \sqrt{2}  -  \sqrt{3}  + 1) {}^{2} }{8 - 3 - 1 + 2 \sqrt{3}     } = \frac{(2 \sqrt{2}  -  \sqrt{3}  + 1) {}^{2} }{4 + 2 \sqrt{3}     } = \frac{(2 \sqrt{2}  -  \sqrt{3}  + 1) {}^{2} }{( \sqrt{3}   + 1) {}^{2}    }

 \tan( \frac{75}{2} )  = \frac{(2 \sqrt{2}  -  \sqrt{3}  + 1)  }{ \sqrt{3}  + 1  } = \frac{(2 \sqrt{2}  -  \sqrt{3}  + 1)  }{ \sqrt{3}  + 1  } \times  \frac{ \sqrt{3}  - 1}{ \sqrt{3}  - 1}  =  \frac{2 \sqrt{6} - 3 +  \sqrt{3} - 2 \sqrt{2} +  \sqrt{3}  - 1   }{3 - 1}  =  \sqrt{6 }  +  \sqrt{3}  -  \sqrt{2}  - 2

Similar questions