tan38°-cot22°=?
give solution with proper steps
Answers
Answered by
33
LHS
=tan38°-cot22°
=(sin38°/cos38°)-(cos22°/sin22°)
=(sin38°sin22°-cos38°cos22°)/(cos38°)(sin22°)
=-cos(38°+22°)(sec38°)(cosec22°)
=-cos60°cosec22°sec38°
=-½cosec22°sec38°
=tan38°-cot22°
=(sin38°/cos38°)-(cos22°/sin22°)
=(sin38°sin22°-cos38°cos22°)/(cos38°)(sin22°)
=-cos(38°+22°)(sec38°)(cosec22°)
=-cos60°cosec22°sec38°
=-½cosec22°sec38°
JAMES1111:
THANKS
Answered by
5
Answer:
Step-by-step explanation:
This is simple, you just have to change tan and cot terms into sin and cos terms,
tan(380)−cot(220)=sin(380)cos(380)−cos(220)sin(220)
=> tan(380)−cot(220)=sin(380)sin(220)−cos(380)cos(220)sin(220)cos(380) —————(1)
We know that,
cos(A+B)=cosAcosB−sinAsinB
Using above trigonometric formula, in (1), we get-
=> tan(380)−cot(220)=−cos((38+22)0)sin(220)cos(380)
=> tan(380)−cot(220)=−cos(600)sin(220)cos(380)
=> tan(380)−cot(220)=−12sin(22deg)cos(38deg)
=> tan(380)−cot(220)=−12(cosec(220))(sec(380))
Similar questions