Math, asked by 413ssr, 1 year ago

Tan³A/1+tan²A + cot³A/1+cot²A=secA cosecA- 2 sinA cos A

Answers

Answered by vikashjaiswal5935
3

Solution:

LHS =

tan³A/1+tan²A  + cot³A /++cot²A

= sin³A/cosA +cos³A/sinA    ( ∵tanA = sinA/ cosA,)

= sin⁴A+cos⁴A/ cosA sinaA

=sin⁴A+cos⁴A+sin²A×cos²A -sin²A×cos²A

=(sin²A+cos²A) -sin²A×cos²A / sinA×cosA

= 1 -2sin²A ×cos²A / sinA×cosA

= secA·cosecA - 2sinA·cosA       (∵ secA = 1/ cosA, cosecA = 1/ sinA)

Hence LHS = RHS

Similar questions