Tan³A/1+tan²A + cot³A/1+cot²A=secA cosecA- 2 sinA cos A
Answers
Answered by
8
(sin^2A+cos^2A)^2=sin^4A+cos^2A+2sin^2A*cos^2A
Attachments:
Anonymous:
Good answer
Answered by
6
]
=Tan³A/1+tan²A + cot³A/1+cot²A
=secA cosecA- 2 sinA cos A
=tan³A/(1+tan²A) + cot²A/(1+cot²A)
=tan³A/sec²A + cot³A/csc²A
=sin³A/cosA + cos³A/sinA
=(sin⁴A + cos⁴A)/(sinA.cosA)
=[(sin²A + cos²A)² -2(sin²A.cos²A)/(sinA.cosA)
=(1 - 2sin²A.cos²A)/(sinA.cosA)
=Tan³A/1+tan²A + cot³A/1+cot²A
=secA cosecA- 2 sinA cos A
=tan³A/(1+tan²A) + cot²A/(1+cot²A)
=tan³A/sec²A + cot³A/csc²A
=sin³A/cosA + cos³A/sinA
=(sin⁴A + cos⁴A)/(sinA.cosA)
=[(sin²A + cos²A)² -2(sin²A.cos²A)/(sinA.cosA)
=(1 - 2sin²A.cos²A)/(sinA.cosA)
Similar questions