Tan3x +tan2x+tanx = tanx . tan2x .tan3x please note the LHS operator is plus sign. i.e positive. You have repliced earlier with negative sign point of view. However i got a question from my class teacher in last unit test
Answers
Answered by
0
To solve for x: Tan x + tan 2x + tan 3x = tan x * tan 2x * tan 3x
tan3x = tan(2x+x) = (tan 2x + tan x)/(1- tan 2x tan x)
so tan x + tan 2x = tan 3x (1 - tan 2x tan x)
LHS = tan 3x [ 1 + 1 - tan 2x tan x] = RHS = tan x tan 2x tan 3x
so simplify to get
either tan x = 0 ie., x = n *π or,
or, tan x tan 2x = 1
ie., tanx * 2 tan x / (1 - tan^2 x) = 1
so tan^2 x = 1/3 so x = n * π/3 where n = any integer.
Answer = ..., -120, -60, 0, 60, 120, 180, 240, 300, 360,....
tan3x = tan(2x+x) = (tan 2x + tan x)/(1- tan 2x tan x)
so tan x + tan 2x = tan 3x (1 - tan 2x tan x)
LHS = tan 3x [ 1 + 1 - tan 2x tan x] = RHS = tan x tan 2x tan 3x
so simplify to get
either tan x = 0 ie., x = n *π or,
or, tan x tan 2x = 1
ie., tanx * 2 tan x / (1 - tan^2 x) = 1
so tan^2 x = 1/3 so x = n * π/3 where n = any integer.
Answer = ..., -120, -60, 0, 60, 120, 180, 240, 300, 360,....
Similar questions