tan3x/tanx=2cos2x+1/2 cos2x-1
Answers
Answered by
1
Answer:
tanx
tan3x
=
sinx/cosx
sin3x/cos3x
=
sinx/cosx
(3sinx−4sin
3
x)/(4cos
3
x−3cosx)
=
4cos
2
x−3
3−4sin
2
x
=
4cos
2
x−3
3−4(1−cos
2
x)
=
4cos
2
x−3
3−4+4cos
2
x
=
4cos
2
x−3
4cos
2
x−1
=
2cos2x−1
2(2cos
2
x)−1
=
2cos2x−1
2(1+cos2x)−1
=
2cos
2
x−1
2+2cos
2
x−1
=
2cos
2
x−1
2cos
2
x+1
Hence, proved.
Answered by
1
Tan3x/tan
=(sin3x/cos3x)/(sinx/cosx)
={(3sinx-4sin3x)/(4cos3x-3cosx)}/(sinx/cosx)
={sinx(3-4sin2x)/cosx(4cos2x-3)}x(cosx/sinx)
=(3-4sin2x)/(4cos2x-3)
={3-4(1-cos2x)}/{2(2cos2x)-3}
=3-4+4cos2x)/{2(1+cos2x)-3}
=(4cos2x-1)/(2+2cos2x-3)
={2(2cos2x)-1}/(2cos2x-1)
={2(1+cos2x)-1}/“ “ “ “ “ “ )
=(2+2cos2x+1)/(2cos2x-1)
=(2cos2x+1)/(2cos2x-1) (PROVED)
It could be helpful for u
=(sin3x/cos3x)/(sinx/cosx)
={(3sinx-4sin3x)/(4cos3x-3cosx)}/(sinx/cosx)
={sinx(3-4sin2x)/cosx(4cos2x-3)}x(cosx/sinx)
=(3-4sin2x)/(4cos2x-3)
={3-4(1-cos2x)}/{2(2cos2x)-3}
=3-4+4cos2x)/{2(1+cos2x)-3}
=(4cos2x-1)/(2+2cos2x-3)
={2(2cos2x)-1}/(2cos2x-1)
={2(1+cos2x)-1}/“ “ “ “ “ “ )
=(2+2cos2x+1)/(2cos2x-1)
=(2cos2x+1)/(2cos2x-1) (PROVED)
It could be helpful for u
Similar questions